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Abstract
An analytical solution is found for the master equation of a system described
by a nonlinear Jaynes–Cummings model, in the presence of nonlinear quantum
dissipation at zero temperature in the large detuning approximation. We study
the influence of nonlinear quantum dissipation on the output entanglement
dynamics of the atom–field system, considering the field to be initially in
SU(1, 1) coherent states. It is found that in the presence of the nonlinear
quantum dissipation, the amplitude of the output entanglement between the
field and the atom decreases with time, however the entanglement between the
field–atom system and the environment increases with time.

PACS number: 03.65.Ud

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement is the distinguishing key feature of quantum mechanics setting it apart from
classical physics. A quantum state of a composite system, consisting of two or more
subsystems, is entangled if it cannot be factorized into a direct product of the states of the
subsystems. Entangled states are useful in quantum information processing such as quantum
teleportation [1], quantum key distribution [2] and superdense coding [3]. Studying quantum
information theory using entangled coherent states has recently received much attention [4–8].
The coherent states of the SU(2) and the SU(1, 1) algebras were studied [9] and generalized
coherent states for SU(n) were considered [10]. Also matrix elements of generalized coherent
operators based on Lie algebras SU(1, 1) and SU(2) were determined [11]. These states are
interesting by themselves, moreover, they have very interesting applications. However, there
are two commonly considered coherent states for SU(1, 1). One SU(1, 1) coherent state
is the analogue of the harmonic oscillator coherent state achieved by displacing the vacuum
state. The analogous SU(1, 1) coherent state is obtained via an SU(1, 1) transformation of
lowest weight state. This SU(1, 1) coherent state is a member of Perelomov’s category of a
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generalized coherent state, and we refer to this state as a Perelomov SU(1, 1) coherent state
[12, 13]. The second SU(1, 1) coherent state, introduced by Barut and Girardello [14], is
the analogue of the harmonic oscillator coherent state being an eigenstate of the annihilation
operator. The purpose of the present work is to study entanglement induced by SU(1, 1)

coherent states with nonlinear dissipation interacting with a two-level atom in the dispersive
limit.

One of the generalizations of the Jaynes–Cummings (JC) model is the intensity-dependent
Jaynes–Cummings (IDJC) model [15]. Because of the commensurability of the Rabi
frequencies, which arises from such a coupling, this model presents absolutely periodic
revivals, contrary to what happens in the ordinary JC model. Moreover, the state vector
representing the evolution of the system is periodic itself. This means that there will be
periodic evolution for any expectation value. What has not been acknowledged is that this
behaviour leads to such an enhancement of certain effects that would otherwise be difficult to
note within the realm of the original JC model. Because of this enhancement, it is possible to
have the generation of well-defined Schrödinger cat-like states during the evolution of the field
in the IDJC model, as has been already discussed [16]. A nonlinear IDJC model has received
much attention in view of its connection with quantum algebras [17]. The quantum algebras,
introduced as a mathematical description of deformed Lie algebras, have given the possibility
of generalizing the notion of creation and annihilation operators of the usual quantum oscillator
and to introduce the deformed oscillator.

Over the last two decades much attention has focused on the properties of the dissipative
variants of the usual (non-deformed) JC model. The dissipative effects caused by the energy
exchange between the system and the environment have been studied both analytically [18]
and numerically [19]. In the last few years the JC model with phase damping (which occurs
when there is no energy exchange between the system and the environment) has also been
studied intensively and applied to decoherence and entanglement [20–22]. Furthermore, with
the experimental realization of the two-photon micromaser [23] the dissipative two-photon JC
model has attracted a great deal of attention. All of the above-cited studies have shown that
the dissipation effects markedly change the dynamical behaviour of the atom–field system.
We study the system in which an atom is coupled with the field via the interaction governed
by a nonlinear JC model by making use of the dynamical algebraical method [24] and find the
exact solution of the master equation for the system with phase decoherence.

In this paper, we investigate the entanglement properties of the SU(1, 1)-related coherent
field interacting with an atom in the dispersive approximation with nonlinear dissipation, and
examine the influence of the initial states on entanglement.

2. The physical model and its analytic solution with Lie algebra

First, we consider a single-mode field interacting with an effective two-level atom with
an intensity-dependent coupling without considering the influence of the dissipation. The
Hamiltonian of the system under the rotating wave approximation is

Ĥ = 1
2h̄ω◦σz + h̄ωâ†â + gh̄[â

√
â†â|e〉〈g| +

√
â†ââ†|g〉〈e|], (1)

where ω is the frequency of the cavity field; ω◦ is the transition frequency between the excited
and ground states of the atom; â and â† are the annihilation and the creation operators of the
cavity field respectively; g is the atom–field coupling constant; σ̂z is the population inversion
operator; and σ̂+, σ̂− are the Pauli raising and lowering operators respectively, with the detuning
parameter � = ω◦ −ω, which measures how far from resonance the two subsystems are. Such
a generalization is of considerable interest because of its relevance to the study of the nonlinear
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coupling between a single atom and the radiation field whereas the atom makes single-photon
transitions [15, 16]. It is also worth mentioning that generalized JC models have become the
subject of intense attention [25–28]. These considerations support the theoretical interest in
the IDJC model since this kind of interaction effectively means that the coupling constant
is proportional to the intensity of the cavity field, which represents a very simple case of
a nonlinear interaction corresponding to a more realistic physical situation. Moreover, the
IDJC model is of considerable interest because of its relevance to the study of the intensity-
dependent interaction between a single atom and the radiation field in quantum optics [15] as
well as the study of the quantized motion of a single ion in an anharmonic-oscillator potential
trap [29]. Physically, this model may be realized as if the cavity contains two different species
of Rydberg atoms, one of which behaves like a two-level atom and the other behaves like an
anharmonic oscillator in the single-mode field of frequency ω [30].

In the large detuning approximation, we have |�|
g

� (n + 1) for any ‘relevant’ photon
number n, which means that the atom is in a cavity whose single-frequency photons are far
from resonance. We can obtain an effective interaction Hamiltonian in the dispersive limit in
the following form [31–35]:

Ĥeff = h̄ωâ†â +
ω◦
2

σz + λ[(ââ†)2|e〉〈e| − (â†â)2|g〉〈g|], (2)

where λ = g2

�
. This Hamiltonian is nonlinear in the atomic space and, as was shown earlier

[36]. It leads to a number of collective effects such as the atomic Schrödinger cat generation
and atomic squeezing, and also it describes the dispersive evolution of the field. Recently,
the dispersive limit of the JC model was studied [37, 38] in order to find relations between
the entanglement of the atomic and field degrees of freedom and the decoherence caused by
coupling the field mode to a zero-temperature reservoir (with linear quantum dissipation).

The SU(1, 1) Lie algebra for the single-mode field may be realized by introducing the
operators K̂+, K̂− and K̂0 defined by the relations

K̂+ =
√

â†ââ†, K̂− = â
√

â†â, K̂0 = â†â + 1
2 . (3)

These three operators form a closed-SU(1, 1) Lie algebra, which is defined by the commutation
relations [12]:

[K̂−, K̂+] = 2K̂0 [K̂0, K̂±] = ±K̂±. (4)

In terms of the SU(1, 1) generators, we may rewrite the Hamiltonian in (2) as

Ĥeff = ω

(
K̂0 − 1

2

)
+

ωo

2
σz + λ(K̂−K̂+|e〉〈e| − K̂+K̂−|g〉〈g|) = Ĥ0 + Ĥ ′

eff, (5)

where Ĥ0 describes the free subsystems and Ĥ ′
eff the interaction between them.

2.1. The master equation and its analytic solution

The damping is important, however, because realistic cavities have finite Q and measuring
processes will cause photons to leak. However, a quantum system used in quantum information
processing inevitably interacts with the surrounding environments (or the thermal reservoirs),
which take the pure state of the quantum system into a mixed state. Thus, analysing the
entanglement decay induced by the unavoidable interaction of the interested systems with the
environment is an important subject. Recently, a master equation for the harmonic oscillator
in the presence of nonlinear quantum dissipation has been derived [39], for the case of an
interaction of the oscillator with its environment. If the bath is at zero temperature, the master
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equation for nonlinear quantum dissipation in the interaction picture has the following form
under the Born–Markov approximation [40]:

∂ρ(t)

∂t
= γ (2âf (â†â)ρf (â†â)â† − â†âf 2(â†â)ρ − ρâ†âf 2(â†â)). (6)

If we take f (â†â) =
√

â†â, the evolution of the compound atom–field system in a dispersive
nonlinear JC model and in the presence of the nonlinear dissipation at zero temperature can
be written in the interaction picture with the operators K+, K− and K0 as
∂ρ̂(t)

∂t
= −i[Ĥ ′

eff, ρ] + γ (2K̂−ρK̂+ − K̂+K̂−ρ − ρK̂+K̂−)

= −iλ(K̂−K̂+|e〉〈e|ρ − K̂+K̂−|g〉〈g|ρ − ρK̂−K̂+|e〉〈e| + ρK̂+K̂−|g〉〈g|)
+ γ (2K̂−ρK̂+ − K̂+K̂−ρ − ρK̂+K̂−). (7)

The master equation can be solved by applying the superoperator method proposed in [33].
By applying the dynamical symmetry method proposed in [41], the solution of the master
equation

∂	̂

∂t
= (L̂ + Ĵ )	̂, (8)

where

[L̂, Ĵ ]	̂ = N̂ Ĵ 	, [N̂, L̂] = 0 (9)

can be given in the form

	̂(t) = eL̂t e( 1−e−N̂t

N̂
)Ĵ 	̂(0), (10)

where L̂, Ĵ and N̂ are the superoperators which satisfy the commutations relations (9).
Therefore, the solution of the master equation (7) for any initial state ρ(0) is given by

ρ̂(t) =
⎛
⎝ eL̂eet e( 1−e−N̂t

N̂
)Ĵ ρ̂ee(0) eL̂eg t e( 1−e−R̂t

R̂
)Ĵ ρ̂eg(0)

eL̂get e( 1−e−R̂∗ t

R̂∗ )Ĵ ρ̂ge(0) eL̂gg t e( 1−e−N̂∗ t

N̂∗ )Ĵ ρ̂gg(0)

⎞
⎠ , (11)

where
L̂eeρ̂ = −εK̂+K̂−ρ̂ − ε∗ρ̂K̂+K̂− − i2λ(K̂0ρ̂ − ρ̂K̂0),

L̂ggρ̂ = −ε∗K̂+K̂−ρ̂ − ερ̂K̂+K̂−,

L̂egρ̂ = −εK̂+K̂−ρ̂ − ερ̂K̂+K̂− − i2λK̂oρ̂,

L̂geρ̂ = −ε∗K̂+K̂−ρ̂ − ε∗ρ̂K̂+K̂− + i2λρ̂K̂o,

Ĵ ρ̂ = 2γ K̂−ρ̂K̂+, N̂ ρ̂ = �ρ̂ + ρ̂�†,

R̂ρ̂ = (�̂ + i2λ)ρ̂ + ρ̂�,

ε = (γ + iλ), �̂ = 2εK̂o.

(12)

It is easy to show that the superoperators of (12) obey the commutation relations

[L̂ee, Ĵ ]ρ̂ = N̂ Ĵ ρ̂, [L̂gg, Ĵ ]ρ̂ = N̂∗Ĵ ρ̂,

[L̂eg, Ĵ ]ρ̂ = R̂Ĵ ρ̂, [L̂ge, Ĵ ]ρ̂ = R̂∗Ĵ ρ̂.
(13)

Also the following commutators apply:

[L̂ee, N̂ ] = 0, [L̂gg, N̂
∗] = 0, [L̂eg, R̂] = 0, [L̂ge, R̂

∗] = 0. (14)

We apply the time-dependent analytical solution for the matrix elements for any initial cavity
field and use it to calculate the time evolution properties of coherence and entanglement in the
IDJC model in the dispersive approximation in the next section.
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3. Dynamical properties of the entanglement

In order to gain insight into the processes of entanglement, dissipation and the relation between
them, we evaluate the time evolution of any initial state for the atom and field. But here, the field
is initially in a nonlinear coherent state, which can be classified as an algebraic generalization of
the conventional coherent state. This state is defined as the right eigenstate of the annihilation
operator K−. Actually, the SU(1, 1) group coherent states have been known for many years
under other names, such as the phase state or its generalization [42]. The physical meaning
of SU(1, 1) coherent states has been elucidated in [43, 44], where it has been shown that
such states may appear as stationary states of the centre-of-mass motion of a trapped ion
[43], or may be related to some nonlinear processes (such as a hypothetical ‘frequency blue
shift’ in high-intensity photon beams [44]). Furthermore, it has been shown that SU(1, 1)

coherent states exhibit various non-classical features such as quadrature squeezing, number-
phase squeezing and sub-Poissonian photon statistics. So, we evaluate the time evolution of
the following initial state:

|ψAF 〉 = (κe|e〉 + κg|g〉)|α, k〉, (15)

where, as is usual in experiments [45], the atom enters the cavity in a coherent superposition
and finds there an SU(1, 1) coherent state |α, k〉. Where |α, k〉 is the SU(1, 1) coherent state.
There are two distinct SU(1, 1) coherent states to consider.

3.1. Perelomov SU(1, 1) coherent states

The Perelomov coherent state of the SU(1, 1) algebra is the result of the displacement operator
acting on the vacuum state, and is defined as [12, 13]

|α, k〉P = (1 − |α|2)k
∞∑

n=0

√
�(2k + n)

�(2k)n!
αn|n, k 〉, (16)

where �(·) is the gamma function and k is the Bargmann number; it comes from the Casimir
operator defined as Ĉ2 = K̂2

0 − 1
2 (K̂+K̂− + K̂−K̂+) = k(k − 1)Î . In this paper we set k = 1

2
and α = |α| eiφ (|α| < 1); in this case

∣∣α, 1
2

〉
P

describes a pure thermal state.

3.2. Barut–Girardello SU(1, 1) coherent states

There is another coherent state of the SU(1, 1) algebra known as the Barut–Girardello coherent
state [14]. It is defined as [46] the eigenstate of the lowering operator K−:

K−|α, k〉BG = α|α, k〉BG;
it can be expressed as [14]

|α, k〉BG =
√

|α|2k−1

I2k−1(2|α|)
∞∑

n=0

αn

√
n!�(2k + n)

|n, k 〉, (17)

where Iν(x) is the modified Bessel function of the first kind. For the case k = 1
2 , which we

consider here,
∣∣α, 1

2

〉
BG describes a nonlinear coherent state which may appear as a stationary

state of the centre-of-mass motion of trapped ions [46].
The elements of the density operator in equation (11) are, initially in (κe|e〉+κg|g〉)|α, k〉P

or (κe|e〉 + κg|g〉)|α, k〉BG, or any SU(1, 1) coherent state as; ρ̂ee(0) = |κe|2|α, k〉〈α, k|,
ρ̂gg(0) = |κg|2|α, k〉〈α, k|, ρ̂eg(0) = κeκ

∗
g |α, k〉〈α, k| = (ρ̂ge(0))†.

5
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In order to obtain ρ̂(t), we find the matrix elements in question and substitute them into
the expression

ρ̂(t) =
∞∑

m,n=0

[|κe|2
(
pm,n + χ+

m,n

)
e−z++

m,n(t)|e〉〈e| + κeκ
∗
g (pm,n + ym,n) e−z+−

m,n(t)|e〉〈g|

+ κgκ
∗
e (pm,n + y∗

m,n) e−z−+
m,n(t)|g〉〈e| + |κg|2

(
pm,n + χ∗+

m,n

)
e−z−−

m,n(t)|g〉〈g|]|m, n〉〈m, n|,
(18)

where

z±±
m,n(t) = μ(t) ± iη±±(t), z±∓

m,n(t) = μ(t) ± iη±∓(t),

μ(t) = γ t[m2 + n2 + (m + n)(2k − 1)],

η±∓(t) = λt[m(m + 2k ± 1) + n(n + 2k ∓ 1) + 2k],

η±±(t) = λt[(m − n)(m + n + 2k ± 1)],

(19)

and

χ±
m,n =

∞∑
r=1

(2γ )r

r!
pm+r,n+r

r−1∏
s=0

(
A±

m+s+1,n+s+1 + iB±
m+s+1,n+s+1

)
,

A±
m,n = βm,n

x(1 − e−x cos y±) + y± e−x sin y±

x2 + y±2
,

B±
m,n = βm,n

x e−x sin y± − y±(1 − e−x cos y±)

x2 + y±2
,

x = 2γ t (m + n + 2k − 2), y+ = 2λt (m − n), y− = 2λt (m + n + 2k − 1),

(20)

with βm,n = √
m(m + 2k − 1)

√
n(n + 2k − 1) and pm,n is the photon-number distribution of

any SU(1, 1) coherent state (|α, k〉P or |α, k〉BG), with the Bargmann number k = 1
2 . The

function μ(t), the real part of the exponential e−z++
m,n(t), in equation (19) embodies the effect

of the reservoir because it vanishes as γ → 0. We note that the exponential is present in all
the coefficients of the density matrix; hence, the coherence properties of the field, atom and
atom–field system states are affected by the damping. By these solutions, we investigate the
dynamical properties of the dissipative nonlinear JC model.

3.3. Various measures of entanglement

There are different measures that have been used to quantify entanglement and correlation. The
interaction between the system and its environment makes the system evolve from a pure state
to a mixed state and leads to the decay of off-diagonal elements of the density operator, which
means decoherence. The mixedness of the mixed state can be measured in terms of the linear
entropy [37] or the total entropy S [22, 47]. The latter has a natural significance stemming from
its connections with statistical physics and information theory [48]. An advantage of using
the linear entropy instead of the total entropy is in the simplification of calculations, without
changing the qualitative physical conclusions. In our work here, we use the total entropy S
of the quantum-mechanical system described by the density operator ρ̂, which quantifies the
entanglement between the field–atom system and the environment. It is defined as

S = − Tr{ρ̂ ln ρ̂}. (21)

This entropy is computed by using numerical computations. There are other measures to
quantify the temporal evolution of the entanglement (purity) between the states of the field or

6



J. Phys. A: Math. Theor. 43 (2010) 025305 A-S F Obada et al

the atom. The purity of the state of the field is investigated by using the entropy of the marginal
density matrix of the field SF = − Tr{ρ̂F ln ρ̂F } = −∑∞

i=1 λF
i ln

(
λF

i

)
. Here the eigenvalues

λF
i of the reduced field density matrix ρ̂F (t) are computed by using numerical calculations.

The reduced atom density operator ρ̂A(t) = TrA{ρ̂(t)} is given by ρ̂A(t) = TrF {ρ̂(t)}, and
then the eigenvalues λA

1,2 for ρ̂A(t) are

λA
1,2 = 1

2
± 1

2

√√√√[ ∞∑
i

(
ρee

ii − ρ
gg

ii

)]2

+ 4

∣∣∣∣∣
∞∑
i

ρ
eg

ii

∣∣∣∣∣
2

. (22)

So, the purity of the state of the atom is quantified by the atomic entropy, SA =
−λA

1 ln
(
λA

1

) − λA
2 ln

(
λA

2

)
. If SA(SF ) = 0, then the states are separable states.

To quantify the amount of entanglement (quantum correlation) of the final state (18), we
use the concept of the negativity [49] defined by

EN = ‖ρT ‖ − 1

2
, (23)

where ρT is the matrix obtained by partially transposing the density matrix ρ, and ‖ρT ‖ is
the trace class norm of the operator ρT . The trace class norm of any trace class operator M̂

is defined by ‖M̂‖ = Tr
√

M̂†M̂ [50], which reduces to the sum of the absolute value of the
eigenvalues of M̂ , when M̂ is Hermitian. Therefore,

‖ρT ‖ =
∑

k

λk − 2
∑

k

λN
k = 1 − 2

∑
k

λN
k , (24)

where λk and λN
k are, respectively, the eigenvalues and the negative eigenvalues of ρT and we

used also the fact that Tr(ρT ) = Tr(ρ) = 1. When EN = 0, the final state (18) is separable.
Vidal and Werner [49] proved that the negativity EN is an entanglement monotone and therefore
it is a good measure of entanglement.

We shall consider another entropy functional to probe the amount of total correlations
by using the mutual entropy or the entropy difference, ED = 1

2 (SA + SF − S) [51]. The
mutual entropy is non-negative, and is zero if and only if the marginal states are not correlated.
It is a measure of both quantum and classical correlation (total correlations) residing in the
composite system.

The entanglement between the atom and the field, as well as the decoherence induced by
the cavity of the dispersive IDJC model, was studied in [37]. It has been shown that, in the
dispersive IDJC model, only the coherence of the atom is influenced by the cavity, though the
atom does not couple to the cavity directly. The coherence of the field remains unchanged
by the environment. However, in the nonlinear JC model considered here, the field is also
affected by the cavity and its coherence will be lost due to the nonlinear dissipation.

In figures 1(a) and (c) and 2(a) and (c), we display the influence of the nonlinear dissipation
on the temporal evolution of the total entropy S, the field entropy SF and the entropy of the atom
SA as functions of the scaled time λt for two different SU(1, 1) coherent states. The presence
of the local maxima and minima in the temporal evolution of SA and SF is due to the field and the
atom loss and gain of their coherence. Because of the reservoir effect, we find that oscillations
and amplitudes of both the field and the atom entropies damp and change with time. If we
follow the curve of atomic entropy, we find that for any (however small) decay parameter
γ , the atomic subsystem goes, asymptotically, to a completely mixed state with maximal
possible entropy. Whereas the entropy of the field mode, with nonlinear dissipation, splits up
from the atomic entropy and the amplitudes of the local maxima and minima decrease with
time. The function μ(t) on the exponential e−zm,n(t) in equation (19) controls the coherence
loss of the field. The real part of the exponential is always nonpositive; hence, it decreases

7
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Figure 1. Time evolutions of S (dot curve), SA (dash curve) and SF (solid curve) as shown in (a)
and (c) and the time evolution of EN(t) (solid curve) in comparison to ED(t) (dashed curve) as
shown in (b) and (d), for different values of γ

λ
= 0.01 (a, b), γ

λ
= 0.1 (c, d) with |α|2 = 0.8 for

the Perelomov SU(1, 1) coherent state, with κe = κg = 1√
2

.

with time. With larger γ , the field finally goes into a mixed state and its coherence is lost
completely. One finds that for larger γ , the amplitudes are quickly suppressed; S, SF and
SA reach their minimum, maximum values and asymptotic values rapidly (see figures 1(c)
and 2(c)).

Since the partial entropies for the atom and the field are no longer equal, they cannot be
used as measures for entanglement between the atom and the field. Therefore, we use the
negativity and the mutual entropy as anagrammatic measures to quantify the entanglement
between the atom and the field. Figures 1(b) and (d) and 2(b) and (d) show the time development
of the negativity and the mutual entropy for |α, k〉P and |α, k〉BG. Comparing EN and ED in
these figures we find complete agreement in the trend between the two measures as long as we
deal with a pure state. The main difference between the two measures is only the difference
between the amplitudes of oscillations. In figures 1 and 2, we display the entanglement
for both |α, k〉P and |α, k〉BG with the same mean photon number |α|2 = 0.8. From these
figures we find that the measures of entanglement with |α, k〉P are more affected than those
for |α, k〉BG. For example, with |α, k〉P and at weak damping γ = 0.01 the field entropy splits
from the atomic entropy faster than its counterpart in the case of |α, k〉BG. As is observed
from figures 1 and 2, we find that the local maxima and minima occur at the same periods.
Therefore, the used measures give the same period of the entanglement. Finally, from these
figures, the values of the negativity disappear faster than its counterpart of the mutual entropy.
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Figure 2. The same as in figure 1 but for the Barut–Girardello SU(1, 1) coherent state.

This implies that the entanglement of the atom and the above field states is sensitive to the
nonlinear dissipation, and to the type of the state.

Figures 1, 2(b) and (d) show that, for a long period of time, one measure (the negativity)
may drop to zero, while the other (the mutual entropy) remains finite. The mutual information
is non-zero does not a priori mean that there is (quantum) entanglement in the system,
since it can be entirely due to classical correlations. This is because the mutual entropy is
approximately equal to the classical upper bound min [SA, SF ], i.e. the bound that becomes
saturated when the two subsystems A and F are classically maximally correlated. Since
only the range between classical and quantum upper bounds corresponds to pure quantum
entanglement [52], it appears that for large values of γ , the mutual entropy evaluation of the
system shows that the system is more classically correlated than quantum correlated.

It is worth noting that the output correlation between the system and the environment
S with nonlinear dissipation grows with time to its maximum value (which oversteps the
atomic entropy SA) and decreases to a steady curve which tends to the steady curve of
the atomic entropy. This means that the system environment loses purity with nonlinear
dissipation and falls into a statistically mixed state. These results differ from their counterpart
with linear dissipation [37], in which S increases monotonically and it reaches directly to
(without overstepping SA) the steady curve of the atomic entropy, which means that the system
environment falls into a statistically mixed state without partial gain of purity.

4. Conclusions

The master equation in the dispersive limit and the nonlinear dissipation for an initial field
obeying the SU(1, 1) Lie algebra is solved. Considering the field to be initially in SU(1, 1)
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coherent states, it is found that in the presence of nonlinear quantum dissipation, the amplitude
of the entanglement between the field and the atom decreases with time, and the entanglement
between the cavity mode-atom system and the environment grows with time. From comparing
EN and ED, a complete agreement in the trend between the negativity and the quantum mutual
entropy is noted. But for long times, one measure (the negativity) may drop to zero, while
the other (the mutual entropy) remains finite. It is worth noting that one of the pioneering
experimental works on the JC-like dynamics in the context of trapped ions was reported
in [53]. They observed the Rabi oscillations among two hyperfine levels of a 9Be+ ion by
measuring the probability of finding the ion in its lower electronic level. Results of this paper
may be relevant to such experiments. In order to gain insight into processes of entanglement,
dissipation and the relation between them, we need to evaluate the time evolution of any initial
states for an atom and the field, where the solution which is introduced by the SU(1, 1) algebra
will allow this.
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